Visteon

Six Sigma Project First-Time-Through of Engineering Change Notices

See the possibilities

FTT of Engineering Change Notices

Champion: Gary Clark, Electrical Conversion (EC) SBU Director

Team:

Gary Clark Champion - Electrical Conversion (EC) SBU Director Todd Gross Deployment Champion – Energy Trans. Systems Quality Manager Six Sigma Black Belt, EC SBU Jon Hobgood Dave Paborsky EC Business Planning Manager **Bob Kittridge** EC CAD supervisor Sherman Allen CAD Design Primary, Wiper/Washer Systems Tim Bodenmiller CAD Design Primary, Alternators Tom Ruediseuli CAD Design Primary, Ignition Jim Gibbs CAD Design Primary, Starters Bill Kirk Timing and Release Supervisor Don Miller Senior Release Analyst, Alternator Pam Johnson Release Analyst, Wiper/Washer Systems Margaret Washington Release Analyst, Starters and Ignition CAD Design Analyst, Starters and Washer/Wiper Systems David Smith **Dennis Skvarce** CAD Design Analyst, Starters and Ignition Dale Bemben CAD Design Analyst, Alternators

Note: Also requires interaction and support from all engineering activities in EC SBU.

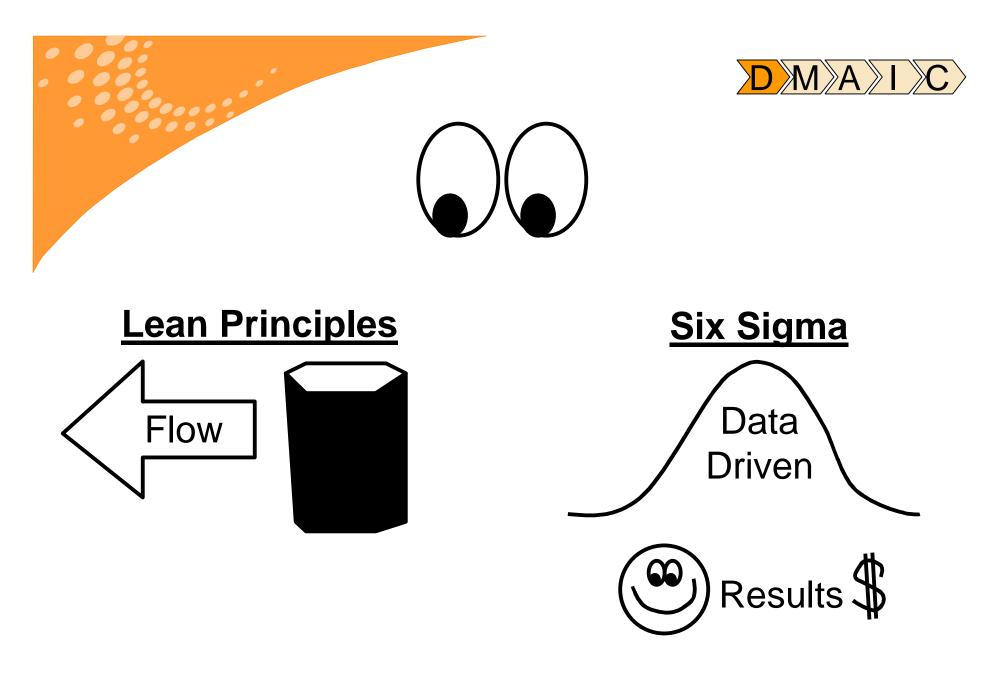
FTT of Engineering Change Notices

Problem:

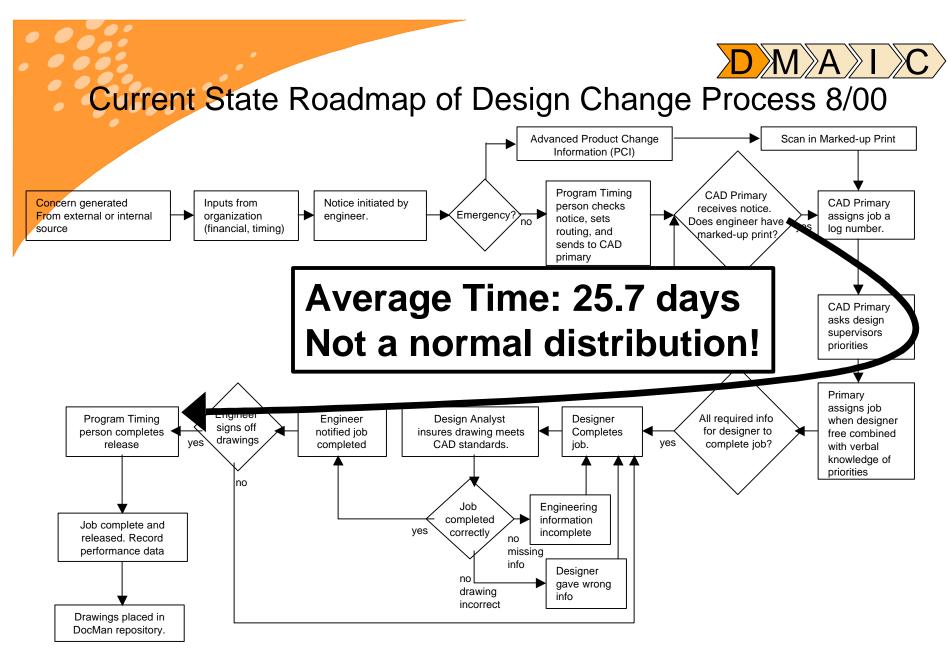
Engineering change notices are not completed efficiently or in a timely manner. Many must be "reworked" in CAD Design area because initial information was not accurate or complete.

		Conclusion of Project	<u>Improvement</u>
First Time Through	30%	72%	140%
Sigma of process	0.38	1.10	189%
			\$240,000

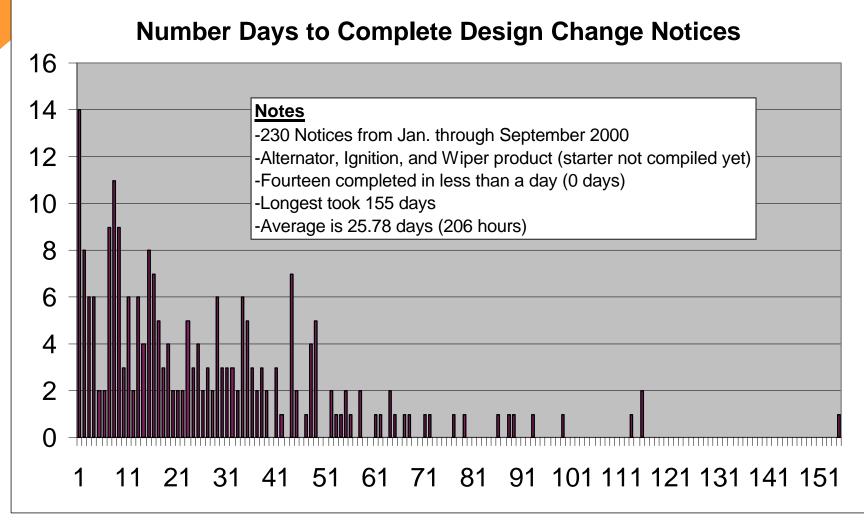
Annual Labor Savings

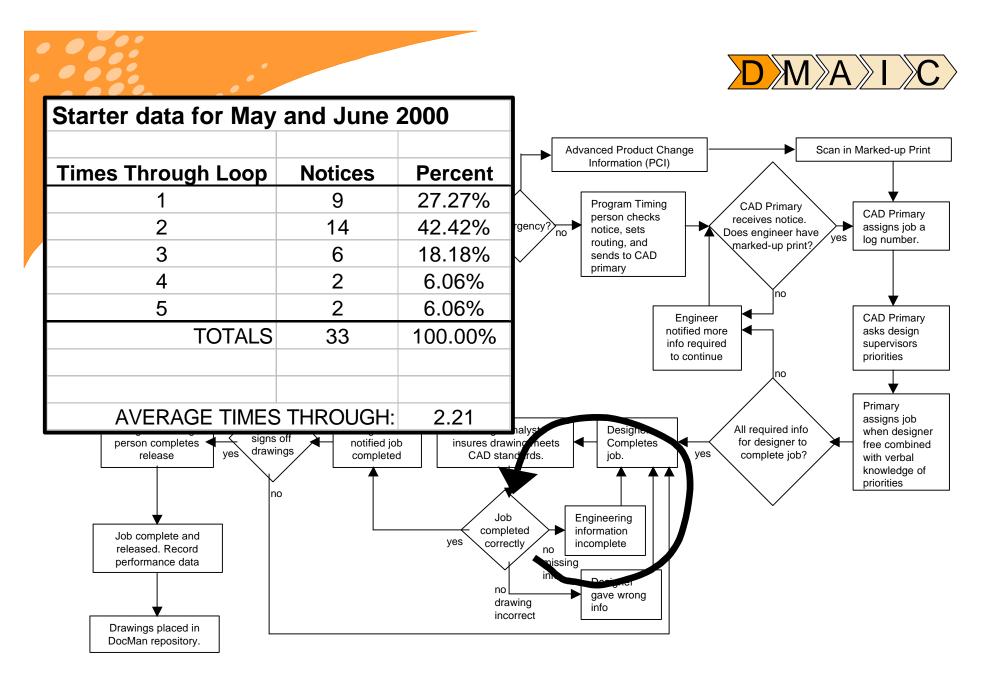

trans-ac-tion

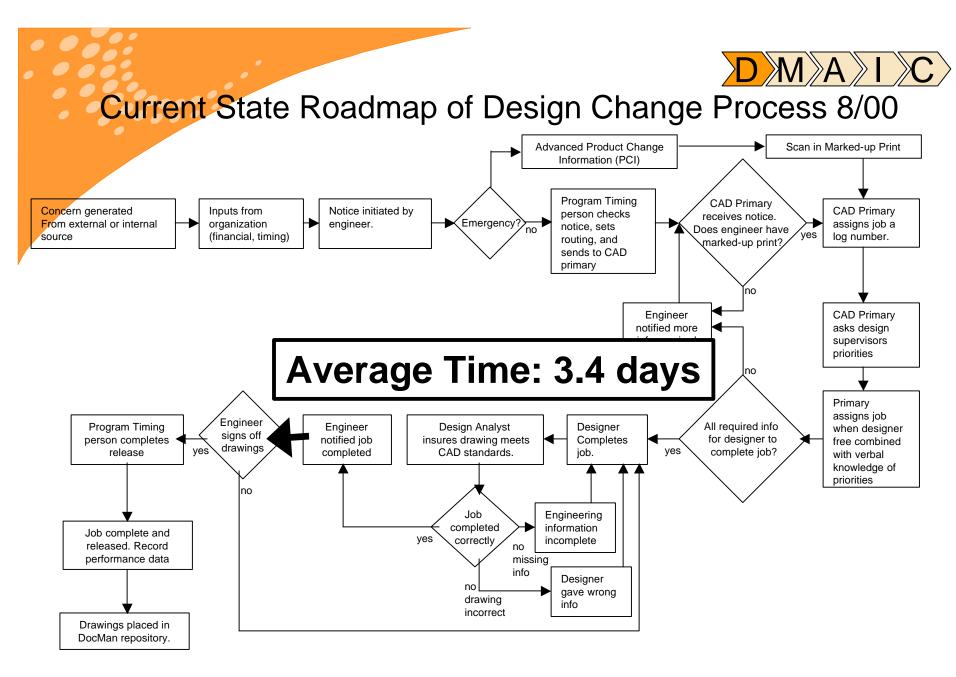
- an exchange or transfer of goods, services, or funds
- communicative action or activity involving two parties or things that reciprocally affect or influence each other

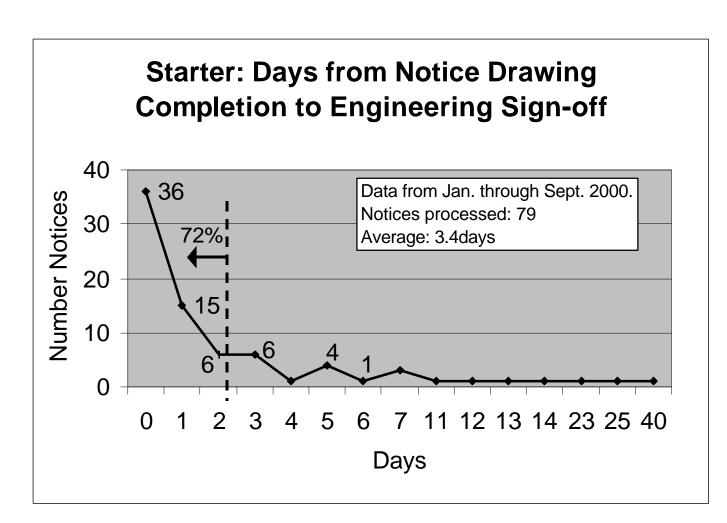

Product Areas: Alternators, Starters, Ignition, Wiper/Washer, Hybrid Motors

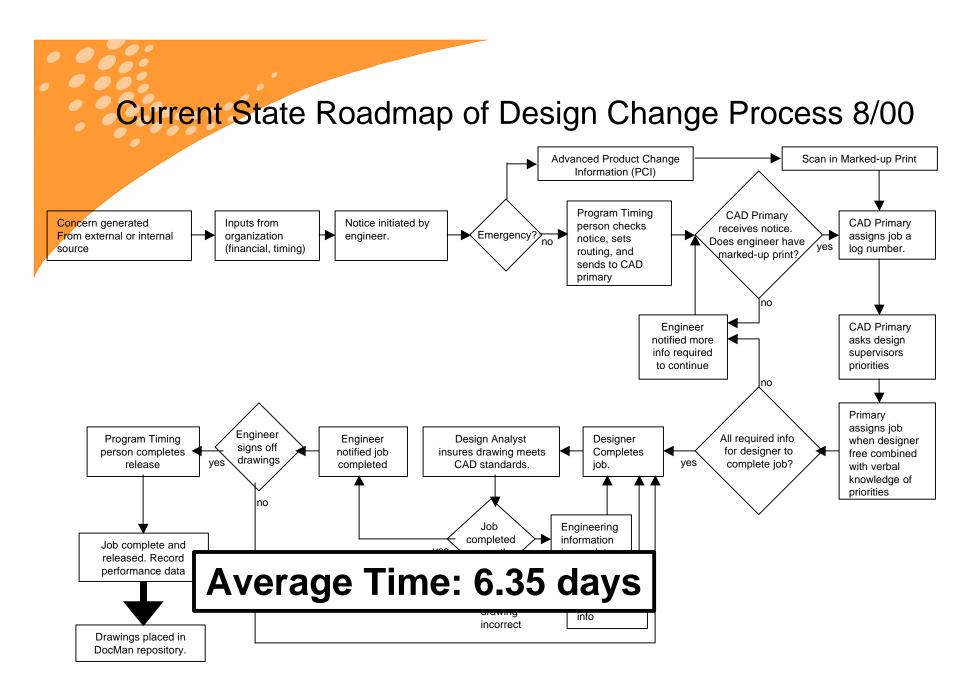
From Merriam-Webster's Collegiate Dictionary online at http://www.webster.com











The current state of the design department is a fire!

•Everything is a priority from engineering

•Dates are not hit

•Correct information is not given before a job is started.

These factors result in little time to make lasting improvement and very poor efficiency.

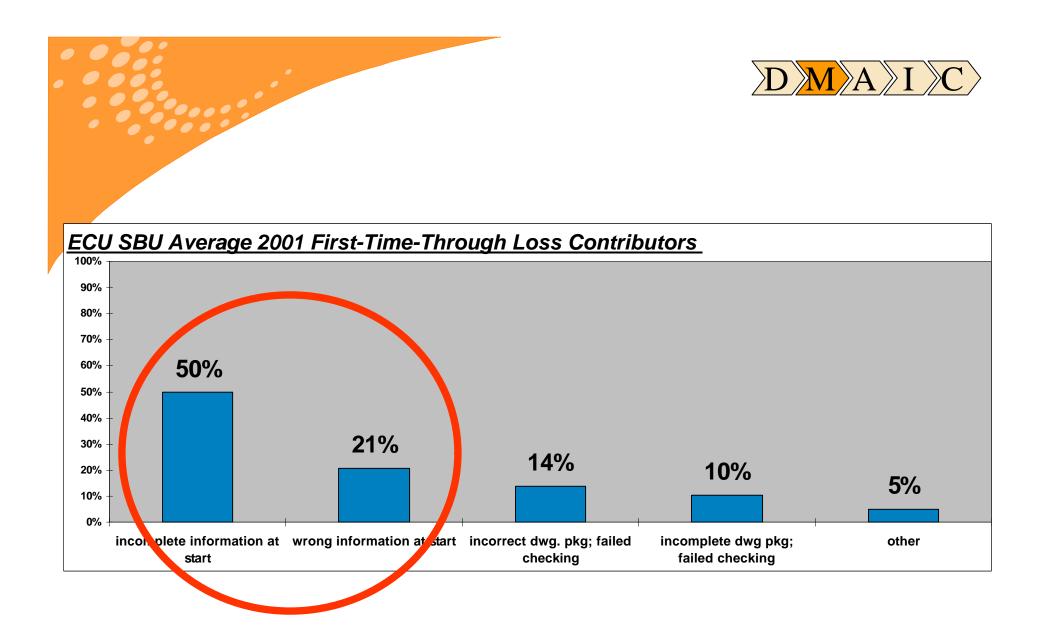
Engineering Change Process Cause and Effect Matrix

					1	
	Importance to	10	9	8	6	1
	customer	-	-		_	
			Design Intent		Standard	
		Timely	Verification (2nd	Dimensional	Interpretation of	
Proc	cess Inputs	Completion	set of eyes)	Values	Dimensions	Tota
1	Designer Personal Work Habits	10	9	7	8	28
2	Designer Experience (dimensioning knowledge)	9	7	10	5	26:
3	Involvement, Participation, Partnership	10	8	6	2	23
4	Designer Product Knowledge	8	7	8	3	22
5	Engineer Experience and Product Knowledge	9	7	7	2	22
6	Software app. Uptime and usefulness	10	5	7	1	20
7	Software expertise of designer	10	2	5	3	17

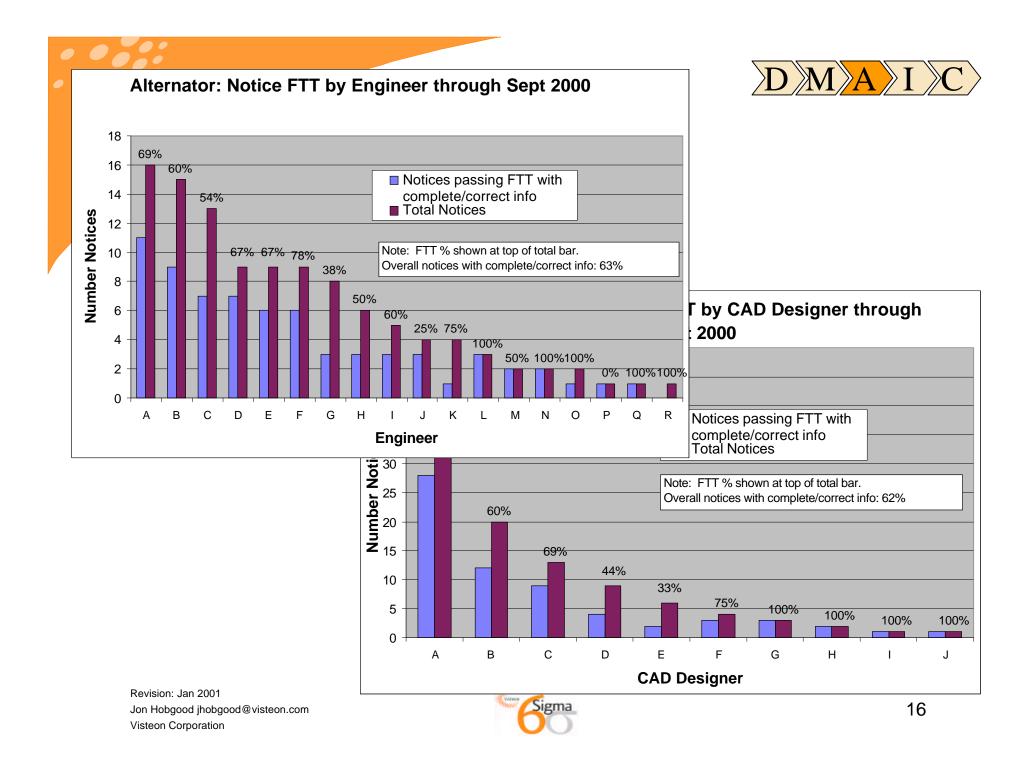
Revision: Jan 2001

Jon Hobgood jhobgood@visteon.com

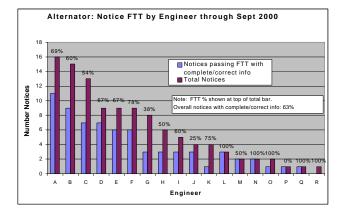
Visteon Corporation


2	LOG #	NOTICE # DF00-E or I	DESIGNER	ENGINEER	DATE RECEIVED	REQUIRED COMPLETION DATE	ACTUAL COMPLETION DATE	NO. DWGS	FTT	FTT CODE
	1	11047654-00	TM	TAYLOR	4-Jan	20-Jan	20-Jan	8	Ν	1
	2	11036323-00	TGB	KOPP	5-Jan	11-Feb	22-Feb	4	Ν	1,2
	3	1040216-00	MM	TAYLOR	6-Jan	18-Feb	29-Feb	22	Ν	1,2,3
	4	10979418-01	TGB	ROOF	7-Jan	19-Feb	19-Jan	2	Ν	2
	5	10979418-03	KV	ROOF	7-Jan	16-Feb	14-Apr	7	Ν	1,3
	6	10979418-03	TM	ROOF	7-Jan	21-Jan	21-Jan	8	Ν	3
	7	10979418-04	TM	ROOF	10-Jan	26-Jan	26-Jan	2	Y	
	8	10979418-04	TGB	MIKKELSON	10-Jan	2-Feb	12-Feb	2	Ν	1
	9	11046067-00	TM	ROOF	13-Jan	2-Feb	2-Feb	3	Y	
	10	11047250-00	KV	ROOF	13-Jan	16-Feb	14-Apr	8	Ν	1,3
	11	10948293-00	TM	KOPP	19-Jan	27-Jan	27-Jan	1	Y	
	12	1024658-00	JW	DARR	19-Jan	11-Feb	28-Feb	1	Y	
	13	10916257-014	DH	FINE	19-Jan	21-Feb	18-Feb	23	Ν	1,2,3
	14	11046727-00	TGB	KINN	27-Jan	18-Feb	17-Feb	1	Ν	5
	15	10916257-01	MM	EVANS	28-Jan	9-Feb	9-Feb	1	Y	
	16	10844300-00	TM	PRICE	28-Jan	7-Mar	8-Mar	5	Ν	1
	17	10979418-04	TGB	MIKKELSON	28-Jan	11-Feb	8-Feb	2	Ν	2
	18	10980417-02	TGB	JIM	28-Jan	28-Jan	28-Jan	2	Ν	5
	19	1049893-00	TGB	PRICE	30-Jan	2-Feb	2-Feb	2	Ν	5
	20	10979418-04	TGB	ROOF	9-Feb	16-Feb	11-Feb	1	Y	
	21	10916257-01	MM	EVANS	10-Feb	28-Feb	14-Mar	10	Ν	2
	22	1065353-00	TGB	JIM	16-Feb	22-Feb	22-Feb	4	Ν	1,3
	23	11007047-00	TM	DARR	17-Feb	1-Mar	17-Feb	1	Y	
	24	10979418-04	TGB	DARR	28-Feb	3-Mar	9-Mar	4	Ν	1
	25	10979418-04	TGB	MIKKELSON	7-Mar	8-Mar	8-Mar	1	Y	
	26	10979418-05	MM	MIKKELSON	7-Mar	17-Mar	27-Apr	1	Ν	1,3
	27	10979418-04	MM	MIKKELSON	7-Mar	17-Mar	21-Mar	2	Y	
	28	10979418-05	TGB	MIKKELSON	7-Mar	12-Mar	9-Mar	2	Y	
	29	10971070-00	TGB	KINN	8-Mar	14-Mar	14-Mar	1	Y	
Γ	30	10979418-04	TGB	PRICE	9-Mar	22-Mar	22-Mar	1	Y	
ſ	31	10979418-04	DH	MIKKELSON	13-Mar	3-Apr	4-May	35	Ν	2
	32	1065372-00	TGB	PILLOTE	13-Mar	5-Apr	8-Jun	16	Ν	1,2,5

Revision: Jan 2001


Jon Hobgood jhobgood@visteon.com

Visteon Corporation



Analysis Conclusions

- No engineer that completed more than 4 notices had over 78% FTT (less than 4 notices was considered noise)
- No CAD designer that completed more than 4 notices had FTT over 69%

- All EC SBU product areas had similar FTT results
- No statistical correlation between Designers and Engineers
- This was a systematic issue, not certain individuals or certain functions.
- Although everyone attempted to do their job well, the FTT of engineering notices was still unacceptable.

	ELECTRICAL	CONVERSION D	ESIGN TRACK	ING SHEEI	
	EVIEW COMPLETE	No Marked Print	No Material App.		Affected Parts
ENGINEER			DAI	E RECEIVED	
DESIGNER		EST COMP DATE	DAT	E ASSIGNED	
DESIGN AN	ALYST		DAT	E COMPLETED	
		PACKAGE H	ISTORY	_	
DATE		EVENT			INTL
	CUSTOMED	SATISFACTION DATA		DESIGN HISTORY	
HOW WOULD YOU		PERIENCE?(Consider timing, accuracy and	professionalism)	1st 2nd	3rd
LOWES	T 1 2 3	4 5 HIGHEST		TIME TIME THRU THRU	TIME THRU
DID THE COMPLE			\$?		
		NO		1 INCOMPLETE DATA FRO	
				2 INCORRECT DATA FROM	I ENGINEER
COMMENTS:				3 INCORRECT/ INCOMP. F	ROMDESIGNE

Visteon

ELECTRICAL CONVERSION SBU DESIGN PROCESS IMPROVEMENTS OCTOBER 2000

PURPOSE

.

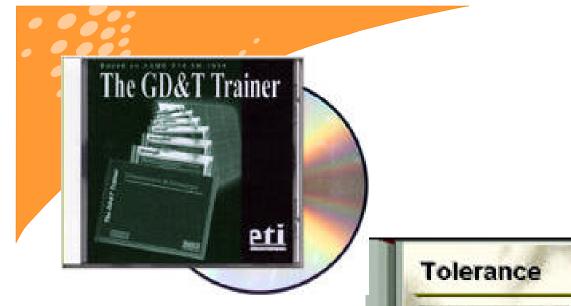
- There are opportunities to make the design process more efficient (please review both pages).
- This document describes initiatives that the Electrical Conversion SBU is implementing.

NOTICE PRE-REVIEW

- No notice will be released to the CAD design department until it is reviewed by the engineer who
 wrote the notice, a representative from CAD (primary, design analyst or designer), and the
 program timing coordinator.
- Engineers must meet with this group of people prior to work starting in the CAD department.
- The purpose of this is to insure the notice can be completed when required for the customer. For example, if it is detected early that a material change approval has not been obtained it can be obtained immediately, not held up at the end of the process after drawings are complete.

FEEDBACK TO CAD DESIGN SERVICES

- Every alert or notice is assigned a log number and tracked to completion.
- An improved tracking cover sheet has been implemented that will record engineering satisfaction with the execution of the notice/alert and any comments from engineering.
- Please encourage your teams to input into the design process, as these comments will also be used as a tool in the annual performance reviews.
- Fifteen to 25% of a CAD designer's performance review now depends directly upon engineering feedback.
- The purpose of this is to reward and reinforce positive support to engineering team.


SIGN-OFF MUST BE IN NOTICE IF REQUIRED

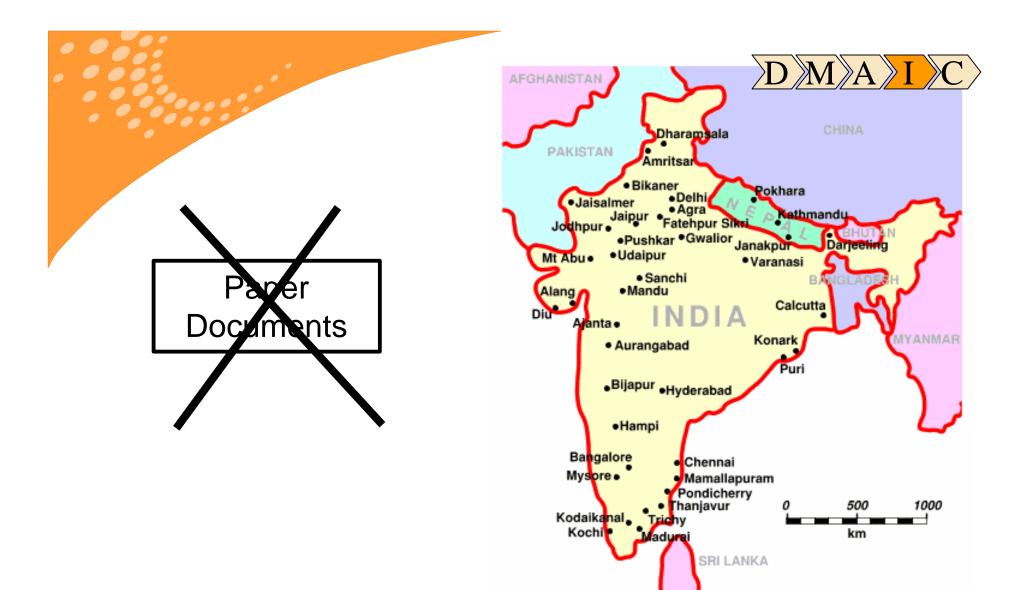
- The release process is moving to electronic process with no manual prints to sign. This will allow electronic prints to be in DocMan within hours instead of an average of 6.3 days.
- Within 48 hours of completion will be released automatically unless drawing is a sheet 1 drawing or engineering manager requests otherwise. Signatures should instead be on marked-up prints.

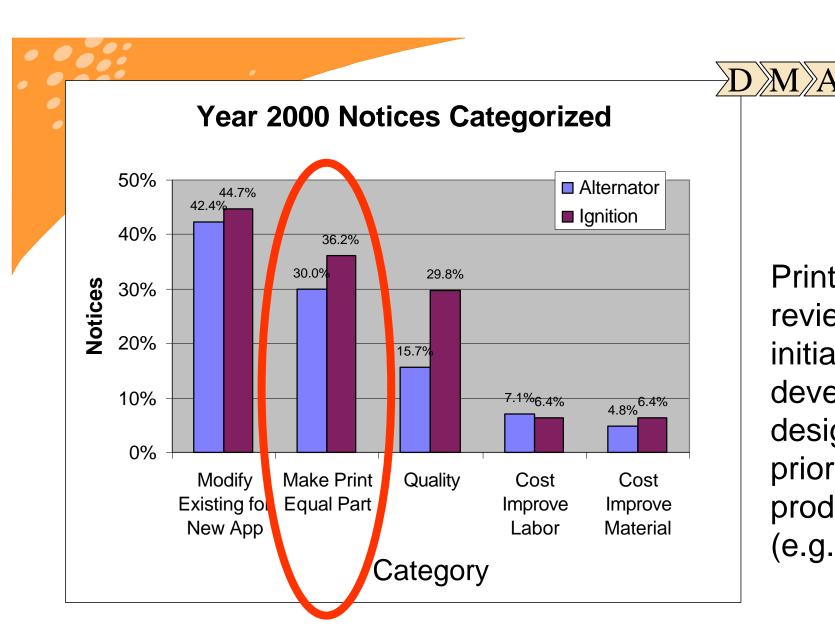
Customer Requirement Date

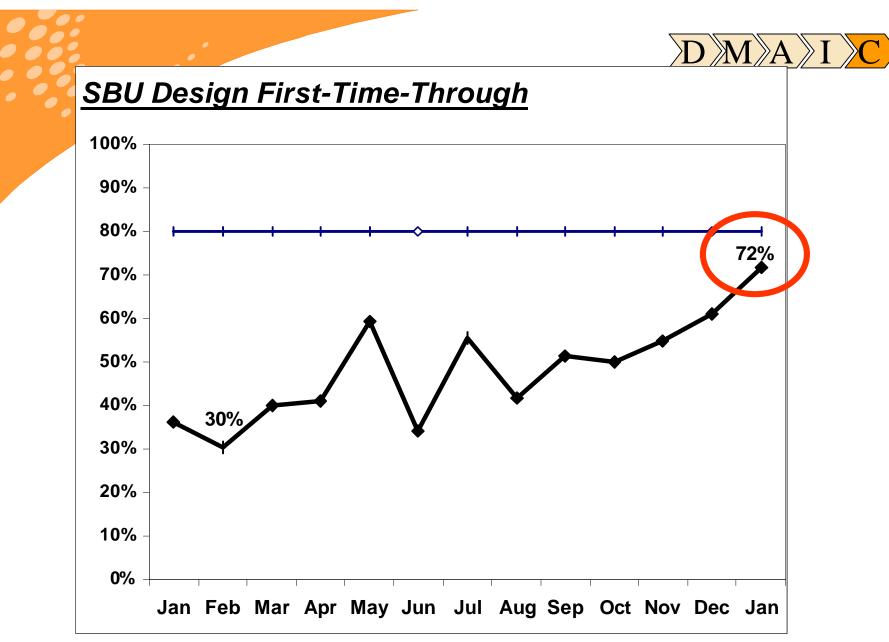
Revision: Jan 2001 Jon Hobgood jhobgood@viste Visteon Corporation In order to satisfy Visteon's customers, deliverables must be completed in a timely manner with highest quality at the most efficient cost in our design process. Realistic dates are required to schedule work through the CAD department. If everything is considered a priority then CAD works overtime or must contract extra support at a higher expense. If some jobs are less critical than others, CAD is able to schedule the work more effectively, with a level schedule.

	Salaried Personnel Perf	ormance	Review	1	INSTRUCT	TIONS:	Refer to Salaried Supervisor's Man Performance Rev	ual,	<u>M</u> A	∦ I
	NAME	SOCIAL S	ECURITY	FORD SERV	/ICE DATE	TIME ON PRESENT POSITION	YEARS	MONTHS		
	STAFF/DIVISION/PLANT	DEPARTN	IENT			0	RGANIZATION C	DDE NUMBER		
	Visteon/Energy Conversion	CAD (D4	,				PH301			
	CLASSIFICATION TITLE	SALARY GRADE	WORK PLA	N DATE	INTERIM	REVIEW DAT	E ANNUAL R	EVIEW DATE		
	Designer									
	ACC LIST MAJOR TASKS AND PROJECTS IN F WHICH BRIEFLY DESCRIBE THE ACCOM TASKS AND PROJECTS OR WRITE COMI	PLISHMENT AN	ER, DOCUMEN	IT EVALUATION HE LEVEL OF	ONS BY PROVIDE EVALUATION.	DING COMMI	ENTS ON PERFO			
	TASKS AND PROJECTS			L OF PERFORM			MENTS ON PERFOR			
	This list should not be considered a complete of all employee tasks and projects.	description	and project	hly one rating for t: SP, S, SM, U.	each task	achieved; als	st of a statement indi o may consist of con employee's proficier	nments		
	Design of Electrical Conversion S Components: (25%) Input supplied by		signer						-	
	Quality of Work: (15-25%) Input supplied by the Design Analyst									
	Assistance to other Designers (Kr Leadership): (15%) Input supplied by		aring and							
	Customer Focus: (15-25%) Input supplied by Engineering and External	Customers								
	Training: (10%) One Technical Class taken in Registered for one Personal \$ GD&T Skills refresher comple	Skills Class	9-00							
	Department Goals: Notices, FTT for Department: Notices, Dock to Dock for Dep Overtime for Department: 129	partment: 400) Hrs.							
	Individual Reference Information: Number of Notices: Number of Alerts: Number of Drawings: Programs worked on:									
	Number of Patents applied fo	r:								
sion: Jan 2001			OTHER CO		ONS				-	
bgood jhobgood	List contributions made by the employee in					Task and Proje	ects Section. If mo	re space		2

A tolerance is the total amount that part features are permitted to vary from their specified dimension. The tolerance is the difference between the maximum and minimum limits. Dimension Ø8±01 - 10 ± 0.2 Tolerance 30 ± 0.5 Lesson 1 3 of 27 Ouit Sigma 21







Print reviews initiated on developing designs prior to production (e.g. ISA)

Data from January through mid-September 2000.

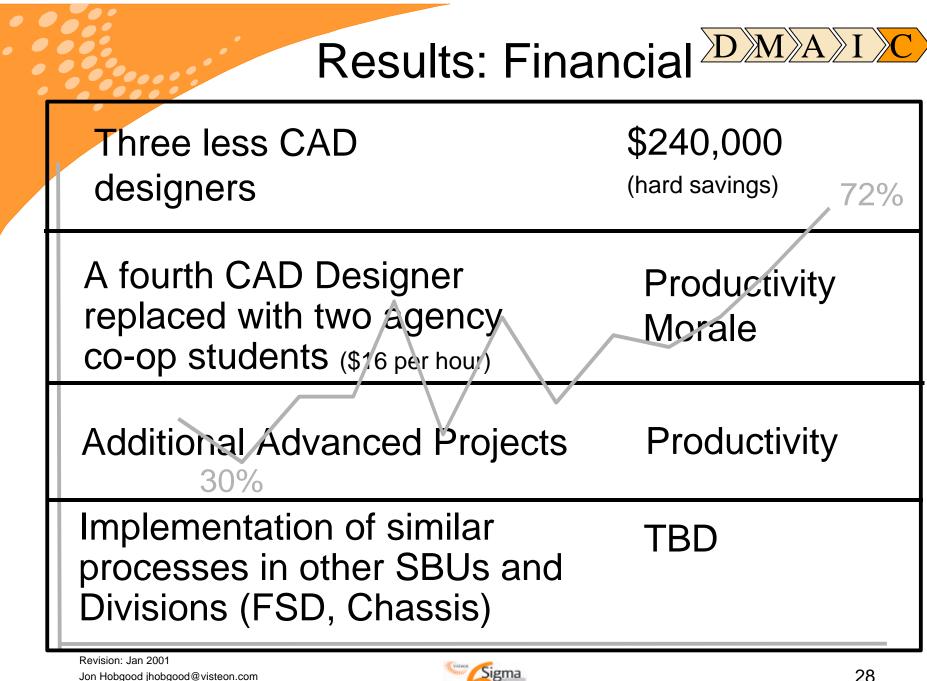
Note: Data from year 2000 and Jan 2001

Closure Date: February 20,2001

And the state and the second se	hange Notices: First 1	ime Through	
This project is: (deble one)	Transactional	Operational	Design
Statement of the Problem: (in Engineering change notice product and eliminate waste in the flow of a through to its completion in the Ele	tivity is low, with frequent an engineering design cha	rework. The purpose of ance initiating from the re	ason for the change
Focus for this Project: (define - Apply operational measurements - Reduce inefficiencies in process	to determine and improve	e effectiveness and efficient	m, limit scope to 4 months) ency.
Results of this Project: route Three CAD designer heads were One CAD designer was replaced Productivity increase allowing mo- Potential multiplication of savings	eliminated, approximately with two less expensive a re resources to focus on	y \$240,000 savings annu agency co-op students. advanced work (EPAS, I	ally.
Sigma Improvement: previous - First Time Through in Early 2000: - First Time Through in January 20 - Sigma Improvement: 0.72 - 240% improvement in First Time	30% (corresponds to .3 01: 72% (corresponds to	8 sigma)	
Investment Required to Obtai None.	in Improvement:	1817	
Recommendations:	"UNWEL" THIS RECK TO	& Assures weened	the econs!
THIS EQUATES TO - 1	AREY OF WAS \$77 HRS \$5000 Advante saving	WENTH NOU-DEC AND	HALF WAS 637.5 HELPH
Project Leaders	Oriel In the second		
Six Sigma Black Belt: Jonathan Deployment Director: Todd A. C		oject Champion: Gary ocess Owner: n/a	D. Clark
Closure Approval Signatures	15 Aug		
	a/alos Ho	in LeClar	2/20/01 Date
Six Sigma Black Belt Da	até Pro	2010/05/28/2011	
Six Sigma Black Belt Da	120/01	*/A ocess Owner	Date

Revision: Jan 2001 Jon Hobgood jhobgood@visteon.com Visteon Corporation

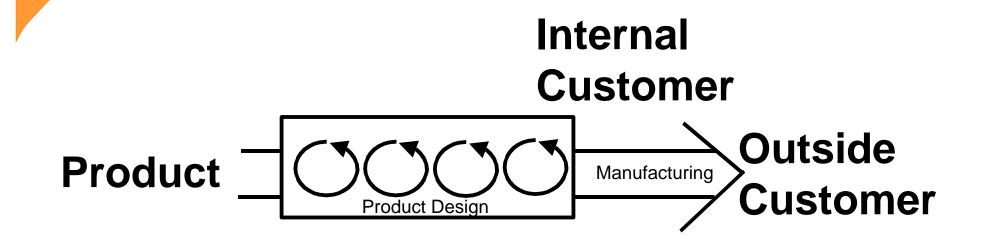
 $\langle D \rangle M \rangle A \rangle$


Results: Improved Information Flow

"There has been a huge increase in marked prints, and I believe the communication between Designers and Engineers is better.

We still need to improve on our WERS info from a standpoint of Designers (including myself) and Engineers. Once we have cleared this hurdle, Notices will flow a lot easier."

-Sherman Allen, Washer-Wiper-ISA Primary Designer February 2001



Visteon Corporation

Results: Customer Satisfaction

Actual Spending

Q1 2000 \$862,671 Q1 2001 <u>\$746,393</u> \$116,278 Quarterly Savings

Spending on PD CAD for the following product areas: Alternator/Starter/Ignition/Wiper/EPAS/Hybrid Motors

Replicating this Method Across Visteon Divisions

- Implement a log to track vital statistics on all engineering changes.
- Implement a <u>common tracking sheet</u> that travels with each job to record all issues - any missing information or other obstacles to complete the job.
- Implement some way of <u>measuring performance</u>, whether it is tracking First Time Through, number of jobs that have required information, or number of jobs completed by required date.
- Require Product Engineering, CAD Designers, and Release Analysts to review the engineering change prior to directing CAD to make the change.
- Meet with individual engineering sections to <u>insure they understand</u> the new procedures and measurement system.
- Incorporate goals on Designers', Engineers', and Release Analyst' performance reviews to meet a specified department objective for the measurable you've chosen.
- GDT Lesson plan that was used: http://etinews.com/compsoft.htm#gdttrainer

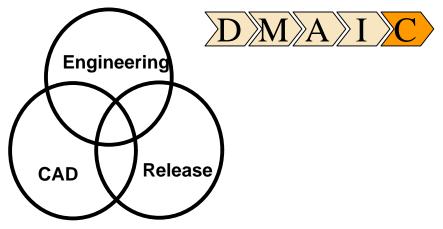
Proposed Visteon-wide Implementation

Action	<u>Date</u>
Review with John Kill, Product	April 30, 2001
Development (PD) Vice President	
Champion identified in each PD	May 11, 2001
Division	
Implementer for each champion	May 14, 2001
identified in each PD Division *	
Assessment and Implementation	July 15, 2001
Complete (2 months in duration)	
Savings Realized from extended	September 1, 2001
project	

*Note: Could be Blackbelt or Process Owner (e.g. Kris Born in Chassis).

Lessons Learned on a Transactional Project

- Analysis does not use statistics tools as extensively as manufacturing projects
- Lots of opportunity in our transactional processes!
- \mathbf{X} Not always easy to calculate benefit



List of Jon's Next Projects

- Visteon-wide Prototype Process
- Visteon-wide Technical Design Reviews
- Visteon-wide FMEA process

Other Possible Projects

- Roles and responsibilities
- Scheduling/prioritization Methods (whiteboard, software, etc.)
- Design Guidelines and Design Reviews, Bookshelf of designs
- Modify tolerances in one effort to eliminate wasteful "Make Print Match Part" engineering changes.
- Step-by-step instructions on how to create a notice. Checklist? Manufacturing Involvement? (release team is taking on this task, starting with an internal survey)
- Opportunity with suppliers not meeting print
- New product design stack-up and intent reviews (ISA) -> guide
- Co-location of CAD designers with engineering in select areas (in process with wiper and ignition product teams)

For more information, please see:

http://hub.visteon.com/ets/energy_mgmt_sbu/ftt

Following Slides are for Reference Only! (not part of 15 minute presentation)

Experiment in Prioritizing CAD Design Services

Experiment in Prioritizing CAD Design Services

Purpose Improve Engineering Change Notice Processing

Many <u>engineering change notices</u> are not completed in a timely manner. Many must be <u>"reworked"</u> in CAD Design area because initial information was not accurate or completed. The purpose of this project is to determine and eliminate waste in the flow of a design change initiating from the reason for the change through to its completion in the Electrical Conversion Strategic Business Unit (EC SBU).

<u>Method</u>

Apply <u>operational measurements</u> to determine and improve effectiveness and efficiency.
Reduce inefficiencies in process using Lean and Six Sigma principles.

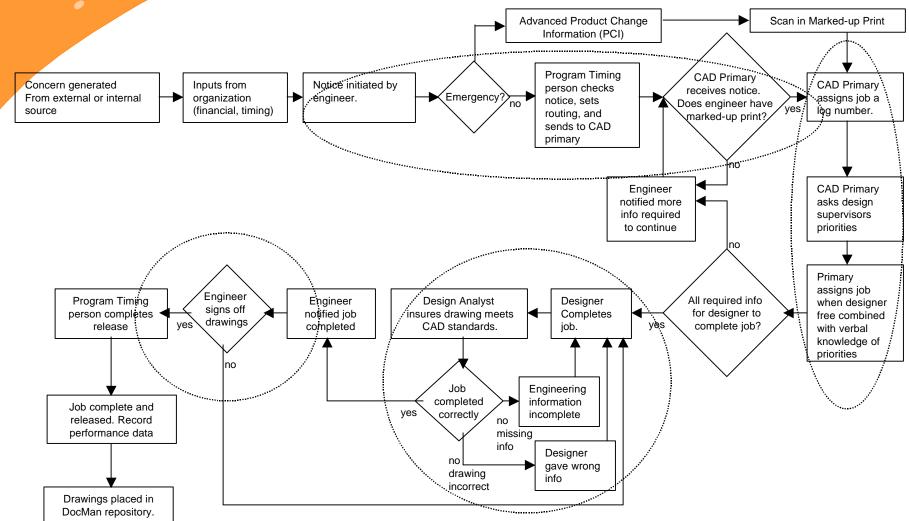
Project Objective

Efficiencies in design change process. Doing more with less engineers and less CAD designers. First Time Through over 80% resulting in decrease of two CAD designers for 2001 (~\$160k) with an increased workload. This does not include intangible savings of lost time spent on "rework" in the design area that could be spent on new, value-add, profit-increasing business. Over 80% FTT will bring the process from below 1 sigma to over 2.5 sigma capable.

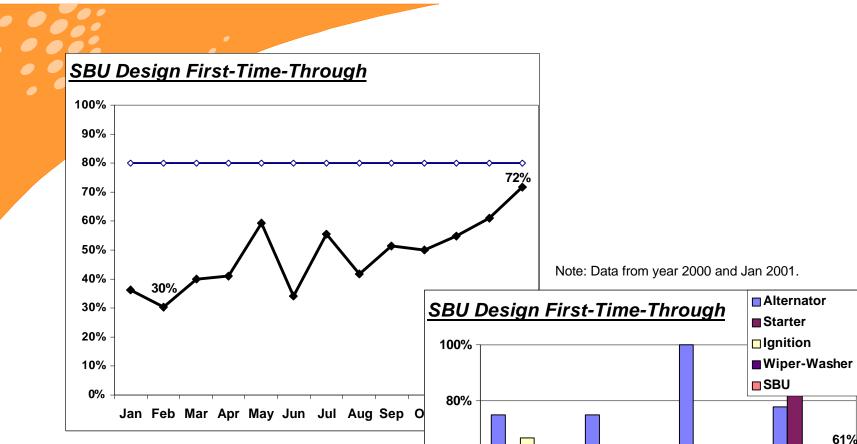
<u>Issues</u>

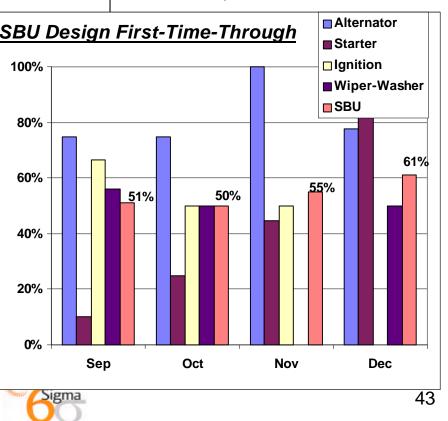
•How can we effectively measure effectiveness in this design process?

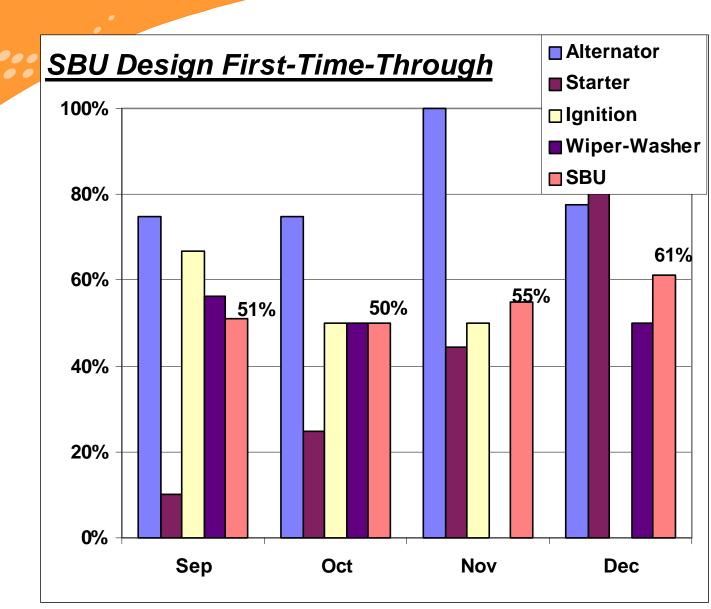
•Culture change – design process <u>hasn't been measured before</u>. Many engineers and CAD designers feel that "every design is different" and common measurements cannot be applied.


•Are the design engineers and CAD designers working on the right things?

•Insure that scope does not creep on this project to delay implementation/benefits.

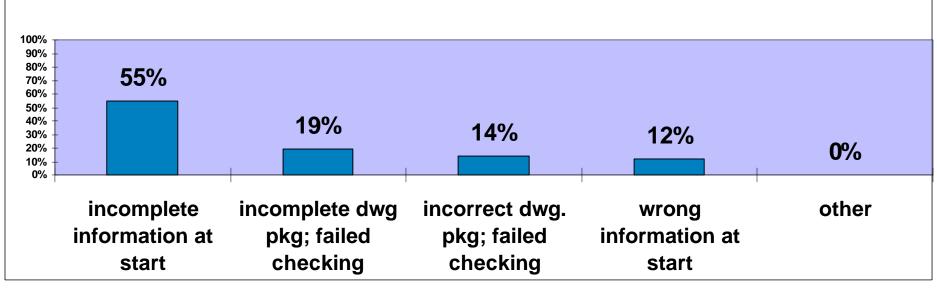

Jon Hobgood jhobgood@visteon.com Visteon Corporation


Current State Roadmap of Design Change Process 8/00

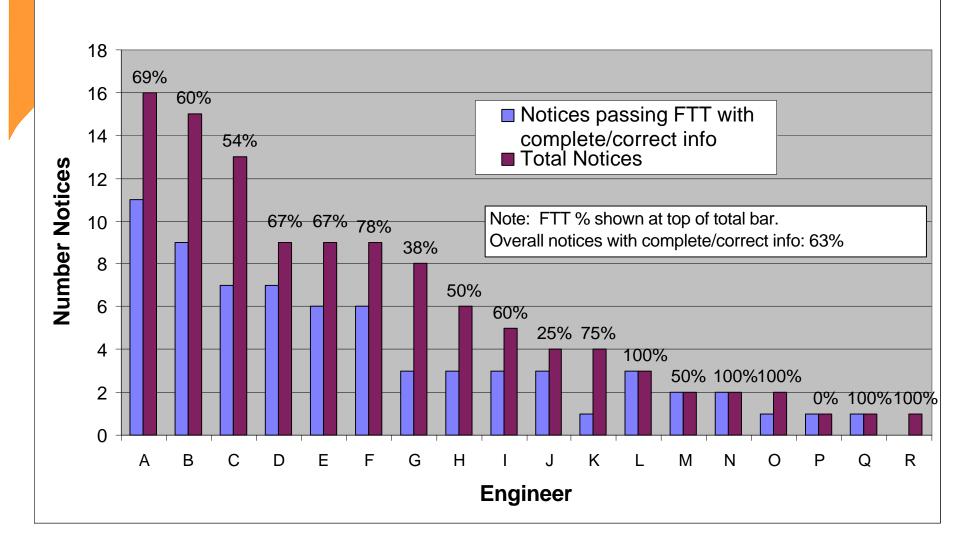

Note: FTT calculated for total number notices in SBU that month (not averaging product areas together, since areas have different numbers of engineering change notices).

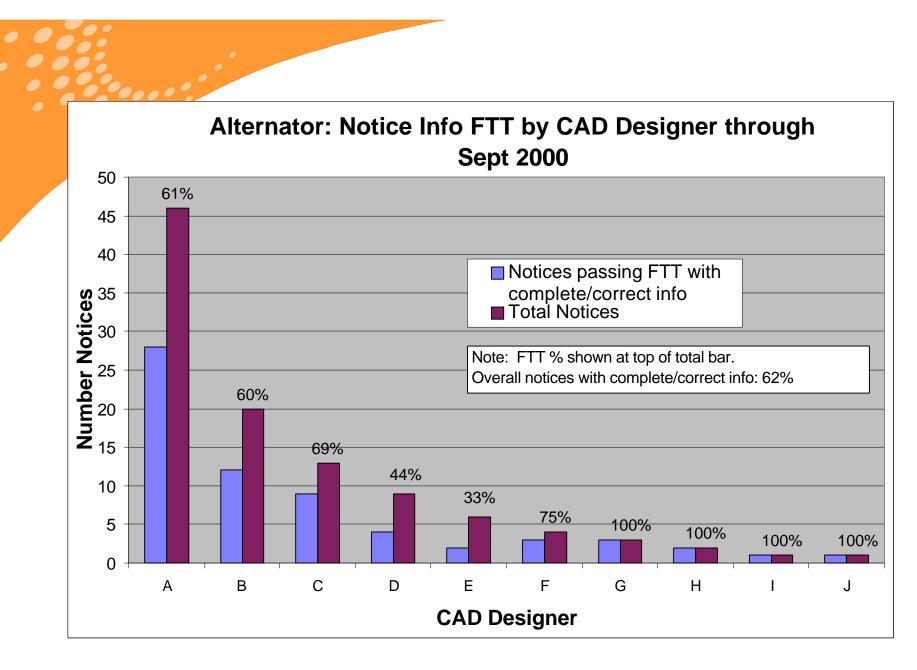
SBU Design First-Time-Through 100% 90% 80% 72% 70% 60% 50% 40% 30% 30% 20% 10% 0% Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

Note: Data from year 2000 and Jan 2001

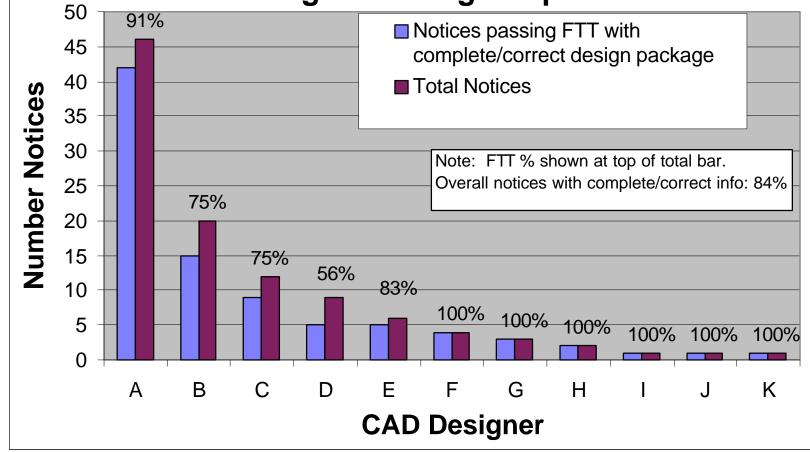


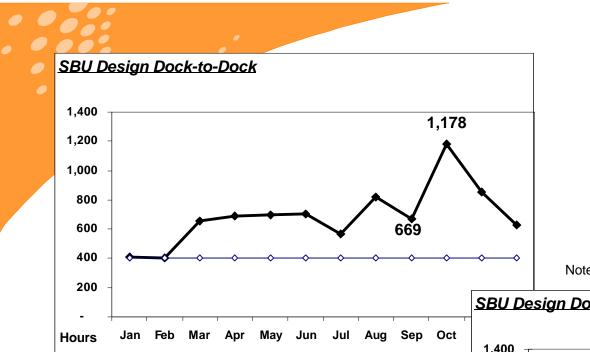
Note: Data from year 2000.

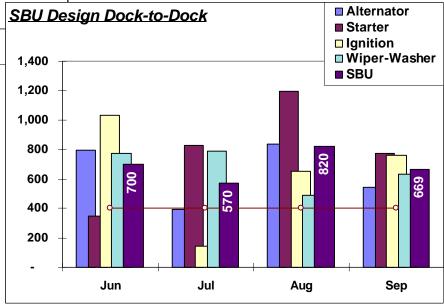




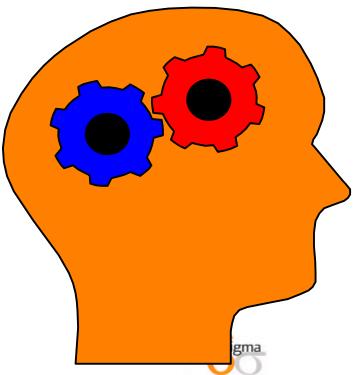
Alternator: Notice FTT by Engineer through Sept 2000






Alternator: Design Package FTT by CAD Designer through Sept 2000

Note: DTD was determined to not be the most effective measure of efficient design change implementation. A better measure would not the time a notice is open, but the time the notice is required to be completed and the percent completed on time (or days late to requirement, etc.). Note: Data from year 2000.



Results: Improved Process

- Common template to track all jobs
- Counseling if design more than twice to analyst
- GDT course completion required for all designers
- Notice Pre-review engineer, primary designer, and release analyst (ongoing reinforcement)
- ProE tool for efficiency and IDEAS envelopes (proprietary)
- Electronic Release implemented (no paper models released directly into archive).
- Low-level design changes contracted to India
- Objectives formally defined and related to process.
- New product design stack-up/intent reviews (ISA) -> guide

Remember when defects were measured as % instead of ppm?